jueves, 24 de mayo de 2012

Microscopio de haz de electrones

Tipos de microscopios electrónicos

Aunque en teoría no hay límite de aumentos que se pueden conseguir con un microscopio óptico, en la práctica existe limitaciones técnicas, grandes limitaciones si se compara con los aumentos que se pueden conseguir con un microscopio electrónico. Este tipo de microscopios utilizan un haz de electrones en lugar de un haz de fotones, y campos electromagnéticos en lugar de lentes.
Aunque los principios básicos de funcionamiento son similares, el microscopio electrónico consigue aumentos de hasta 1000000x con un poder de resolución de 0,1nm (0,0000001mm), en comparación con los aumentos de 2000x y resolución de 0,2mcm (0,0001mm) del microscopio óptico.
Los elementos básicos de un microscopio electrónico son el cañón de electrones, que emite un haz de electrones, un campo electromagnético para dirigir y enfocar el haz de electrones sobre la muestra, y un sistema de vacío para eliminar el aire y evitar que sus moléculas desvíen los electrones.
Existen dos tipos básicos de microscopios electrónicos: microscopio electrónico de transmisión (TEM) y microscopio electrónico de barrido (SEM).

Microscopio electrónico de transmisión (TEM)

El haz de electrones emitido por el cañón se dirige sobre la muestra que se quiere observar. Una parte de los electrones chocaran y rebotarán o serán absorbidos, mientras que otra parte atravesarán la muestra. Los electrones que atraviesan la muestran son los que crean la imagen aumentada del objeto.
La muestra que se quiere observar al microscopio electrónico de transmisión necesita ser cortada en láminas muy finas, del orden de 50 a 200nm.
La imagen obtenida con este tipo de microscopio es en blanco y negro y son imágenes en dos dimensiones que se pueden plasmar en una película fotográfica.

Microscopio electrónico de barrido (SEM)

A diferencia del microscopio electrónico de transmisión, el microscopio electrónico de barrido recoge los electrones que rebotan, en lugar de los que atraviesan la muestra. Se realiza un barrido sobre la superficie de la muestra. No necesitan los cortes microscópicos como el TEM.
Su funcionamiento consiste en pasar un haz de electrones muy concentrado por toda la superficie de la muestra, cuyas estructuras dispersan a los electrones. Un dispositivo electrónico situado ambos lados de la muestra recoge los electrones dispersados. Cada punto que recibe electrones representa un pixel en la imagen obtenida, cuántos más electrones incidan en el mismo punto, más brillante será.
La imagen obtenida con el microscopio electrónico de barrido es tridimensional, lo que permite estudiar con gran precisión la forma y tamaño de estructuras celulares. Esta es la principal ventaja del SEM sobre el TEM. Sin embargo, el microscopio electrónico de barrido tiene menos potencia, sólo llega a 100000x y a una resolución 1000 veces inferior al TEM. Otro inconveniente es que permite observar sólo la superficie de los objetos estudiados y no su interior.
Existe un tipo de microscopio electrónico de barrido y transmisión a la vez; se combinan las ventajas del TEM y del SEM llegando a poderse visualizar incluso átomos individuales.

Otros tipos de microscopios electrónicos

  • Microscopio sonda de barrido
  • Microscopio de túnel de barrido
  • Microscopio de fuerza atómica





los metales en la prehistoria

 


La edad de los metales
 
Es la etapa en la cual el hombre descubre el uso de los metales y los incorpora a su cultura para fabricar distintos elementos. Aparece entonces la metalurgia. Los historiadores reconocen tres edades de los metales, según el material usado con más intensidad: Edad de cobre, Edad de bronce y Edad de Hierro. 
 
El cobre fue el primer metal utilizado, seguido del bronce, cuando el hombre aprendió a fundir cobre con estaño. Con estos metales se hicieron cuchillos, espadas, puñales, vasijas, adornos, herramientas, etc. Por último apareció el hierro, pero el uso de este metal, que permitió la fabricación de armas, herramientas y otros elementos de gran dureza, se logró alcanzar recién en los tiempos históricos.


 Edad de cobre o calcolitico ( 4 ooo -3 ooo a.c )

-El hombre prehistorico aprendio a usar el cobre el cual era facil de obtener debido a sus presencia en la superficie terrestre mezclado con otros minerales (el hombre aprende el proceso de la metalurgia, a través de la experimentación o de la casualidad ,caída de cobre al fuego ).Asi construyo vasijas y arma cuyo uso combinaron con lapiedra pulimentada.Caracteristicas
 
-Invencion de la metalurgia
-Desarrollo de la agricultura : arado,regadio,estiercol y nuevos cultivos (olivo vid...)
-Desarrollo de la ganaderia ,domesticacion del asno y el buey,obtencion de leche ,lana ,queso y yogurt...
-Desarrollo de la mineria
El cobre, junto con el oro y la plata, es de los primeros metales utilizados en la Prehistoria


Edad de Bronce ( 3 000 - 1 500 a.c )

-El bronces es resultado de la aleacion de cobre (90%) + estaño (10%) aproximadamente , obteniendose un metal mas duro y resistente
-Aparición del primer Estado, la primera autoridad política.
-La organización social se ha hecho más compleja que en los poblados neolíticos. Desaparición de la igualdad social
-Surge en el Creciente Fértil hacia el IV milenio a. C
-El bronce se origina en la actual Armenia, en torno al año 2800 a.C., pero tambien simultáneamente en la India, Irán, Sumeria y Egipto. Hacia el 2400 a.C. llega al Egeo y hacia el 1700 a.C. a Europa.
-En Europa central se introdujo hacia el año 1800-1600 y se desarrolla hasta el 700 a.C. En este periodo se generalizan las construcciones megalíticas.
-El mar Egeo es un área de intenso comercio del bronce.

Edad de Hierro (1 500 a.c )

-Es el estadio en el desarrollo de una civilización en el que se descubre y populariza el uso del hierro como material para fabricar armas y herramientas.
- En algunas sociedades antiguas, las tecnologías metalúrgicas necesarias para poder trabajar el hierro aparecieron de forma simultánea a otros cambios tecnológicos y culturales, incluyendo muchas veces cambios en la agricultura, las creencias religiosas y los estilos artísticos, aunque ese no ha sido siempre el caso.
-El hierro le permitio al hombre dominar mejor elmedio y ampliar su horizonte cultural.Los hititas fueron los primeros en usar el hierro

-Los primeros en trabajar el hierro en abundancia fueron los hititas, hacia el 1300 a.C., que lo exportaban a Egipto y a Asiria. En Grecia el hierro entró con los dorios hacia el 1200 a.C. En el resto de Europa alcanzó su máximo esplendor hacia el 450 a.C., con la cultura de La Tène.
-El hierro era un metal mucho más duro y duradero que el bronce, pero también necesita unas temperaturas mucho mayores para su fundición

Supone un cambio tecnológico consistente en la generalización de la metalurgia para construir los utensilios de trabajo.

La edad de los metales convive con los primeros pasos de la historia: así mientras en Mesopotamia y el Creciente Fértil ya había manifestaciones escritas a Europa occidental estaban llegando las innovaciones neolíticas de la metalurgia: no debe olvidarse que la humanidad no ha pasado de una edad a otra en la misma época en todos los lugares, pues sus progresos no han seguido los mismos pasos en todas partes.

 

 

domingo, 20 de mayo de 2012

nanotecnologia, nanomateriales, nanotubos y fullerenos

 Nanotecnologia

La palabra "nanotecnología" es usada extensivamente para definir las ciencias y técnicas que se aplican al un nivel de nanoescala, esto es unas medidas extremadamente pequeñas "nanos" que permiten trabajar y manipular las estructuras moleculares y sus átomos. En síntesis nos llevaría a la posibilidad de fabricar materiales y máquinas a partir del reordenamiento de átomos y moléculas. El desarrollo de esta disciplina se produce a partir de las propuestas de Richard Feynman.
La mejor definición de Nanotecnología que hemos encontrado es esta: La nanotecnologia es el estudio, diseño, creación, síntesis, manipulación y aplicación de materiales, aparatos y sistemas funcionales a través del control de la materia a nano escala, y la explotación de fenómenos y propiedades de la materia a nano escala.
Cuando se manipula la materia a la escala tan minúscula de átomos y moléculas, demuestra fenómenos y propiedades totalmente nuevas. Por lo tanto, científicos utilizan la nanotecnología para crear materiales, aparatos y sistemas novedosos y poco costosos con propiedades únicas
Nos interesa, más que su concepto, lo que representa potencialmente dentro del conjunto de investigaciones y aplicaciones actuales cuyo propósito es crear nuevas estructuras y productos que tendrían un gran impacto en la industria, la medicina (nanomedicina), etc..


Nano- materiales
Son materiales a nanoescala. Materiales con características estructurales de una dimensión entre 1-100 nanometros.
Los nanomateriales pueden ser subdivididos en nanopartículas, nanocapas y nanocompuestos. El enfoque de los nanomateriales es una aproximación desde abajo hacia arriba a las estructuras y efectos funcionales de forma que la construcción de bloques de materiales son diseñados y ensamblados de forma controlada.
Un reciente informe de Small Times predice un fuerte crecimiento de los denominados nanomateriales. En el mismo se comentan los diferentes tipos existentes en la actualidad (tales como las nanoarcillas para reforzar plásticos) o los nanotubos de carbono para agregar conductividad a varios materiales.
Muchos de estos avances los están llevando a cabo empresas norteamericanas pequeñas y medianas en colaboración con empresas líderes.
Existen tres categorías básicas de nanomateriales desde el punto de vista comercial y desarrollo: óxidos metálicos, nanoarcillas y nanotubos de carbono. Los que más han avanzado desde el punto de vista comercial son las nanopartículas de óxido metálico.
  

 Nanotubos
Los nanotubos se componen de una o varias láminas de grafito u otro material enrolladas sobre sí mismas. Algunos nanotubos están cerrados por media esfera de fullerene, y otros no están cerrados. Existen nanotubos monocapa (un sólo tubo) y multicapa (varios tubos metidos uno dentro de otro, al estilo de las famosas muñecas rusas). Los nanotubos de una sola capa se llaman single wall nanotubes (SWNTS) y los de varias capas, multiple wall nanotubes (MWNT)
Los nanotubos tienen un diámetro de unos nanometros y, sin embargo, su longitud puede ser de hasta un milímetro, por lo que dispone de una relación longitud:anchura tremendamente alta y hasta ahora sin precedentes.
La investigación sobre nanotubos de carbono es tan apasionante (por sus múltiples aplicaciones y posibilidades) como complejo (por la variedad de sus propiedades electrónicas, termales y estructurales que cambian según el diámetro, la longitud, la forma de enrollar...)

Los nanotubos de carbono son las fibras más fuertes que se conocen. Un solo nanotubo perfecto es de 10 a 100 veces más fuerte que el acero por peso de unidad y poseen propiedades eléctricas muy interesantes, conduciendo la corriente eléctrica cientos de veces más eficazmente que los tradicionales cables de cobre.

El grafito (sustancia utilizada en lápices) es formado por átomos de carbono estructurados en forma de panel. Estas capas tipo-panel se colocan una encima de otra. Una sola capa de grafito es muy estable, fuerte y flexible. Dado que una capa de grafito es tan estable sola, se adhiere de forma débil a las capas al lado, Por esto se utiliza en lápices - porque mientras se escribe, se caen pequeñas escamas de grafito.
En fibras de carbono, las capas individuales de grafito son mucho más grandes que en lápices, y forman una estructura larga, ondulada y fina, tipo-espiral. Se pueden pegar estas fibras una a otras y formar así una sustancia muy fuerte, ligera (y cara) utilizada en aviones, raquetas de tenis, bicicletas de carrera etc.

Pero existe otra forma de estructurar las capas que produce un material más fuerte todavía, enrollando la estructura tipo-panel para que forme un tubo de grafito. Este tubo es un nanotubo de carbono.
Los nanotubos de carbono, además de ser tremendamente resistentes, poseen propiedades eléctricas interesantes. Una capa de grafito es un semi-metal. Esto quiere decir que tiene propiedades intermedias entre semiconductores (como la silicona en microchips de ordenador, cuando los electrones se muevan con restricciones) y metales (como el cobre utilizado en cables cuando los electrones se mueven sin restricción). Cuando se enrolla una capa de grafito en un nanotubo, además de tener que alinearse los átomos de carbono alrededor de la circunferencia del tubo, también las funciones de onda estilo mecánica cuántica de los electrones deben también ajustarse. Este ajuste restringe las clases de función de onda que puedan tener los electrones, lo que a su vez afecta el movimiento de éstos. Dependiendo de la forma exacta en la que se enrolla, el nanotubo pueda ser un semiconductor o un metal.
Definición de un nanotubo de carbon

qué es un nanotubo




Fullerenos

El hallazgo casual del fullereno se produjo al irradiar un disco de grafito con un laser y mezclar el vapor de carbono resultante mediante una corriente de helio. Cuando se examinó el residuo cristalizado, se encontraron moléculas constituidas por 60 átomos de carbono. Intuyendo que estas moléculas tenían una forma semejante a la cúpula geodésica construida con motivo de una Exposición Universal en Montreal en 1967 por el arquitecto Buckminster Fuller, fueron nombradas como Buckminsterfullerenos o más comunmente como fullerenos.
Se trata de un material obtenido por interacción de átomos de carbono C60 en fase gaseosa, logrando que los átomos de carbono se unieran en hexágonos y con dobles enlaces resonantes entre átomos de carbono vecinos, como si se tratara del benceno.
En la Unión de Arizona y en el Instituto Max Planck, a través de descargas eléctricas con electrodos de grafito en atmósfera de helio y disolución en tolueno, pudo obtenerse un polvo que permitió su estudio mediante espectrometría infrarroja-resonancia magnética nuclear y difracción de rayos X. Así se pudo identificar el Fullereno C60 y definir su estructura por medio de los típicos modelos orgánicos (12 pentágonos - 20 hexágonos con átomos de carbono tetravalente en los vértices). Otras estructuras se fueron descubriendo desde los C16 a C60 que pudieron corroborar para el más escéptico la estructura de balón similar a la pelota olímpica del fútbol mundial. En esa configuración los átomos de carbono de los hexágonos tienen dobles enlaces resonantes entre átomos vecinos como si se tratara del benceno.
Fullereno
Aplicaciones
Los polímeros son, sin duda, uno de los materiales que han encontrado una mayor aplicación debido a sus múltiples propiedades, así como también por su fácil procesabilidad y manejo. Gracias a la incorporación de fullerenos en los polímeros, se conseguirían propiedades electroactivas y de limitación óptica. Esto podría tener sobre todo aplicación en recubrimiento de superficies, dispositivos conductores y en la creación de nuevas redes moleculares.
También son de aplicación en el campo de la medicina, gracias a sus propiedades biológicas. A este respecto, se consiguió que un fullereno soluble en agua mostrara actividad contra los virus de inmunodeficiencia humana que causan el SIDA.
Toxicidad
Considerando la reactividad de los fullerenos, éstos se tornan potencialmente tóxicos sobre todo si se toma en cuenta que son materiales lipofílicos que tienden a ser almacenados por los organismos en zonas de tejidos grasos. De ahí que Eva Oberdorster  haya corroborado que los fullerenos como el C60 pueden inducir un estrés oxidante en los cerebros de los peces róbalo. Más aun, Lovern y Klaper sugieren un considerable grado de mortalidad del Daphnia Magna (un diminuto crustáceo, popular alimento para peces de acuario, y usualmente utilizado por su sensibilidad en estudios de ecotoxicológicos) cuando son expuestos a nanopartículas de dióxido de titanio (TiO2) y al fullereno C60.
Otros estudios han señalado que, además de que ciertos nanomateriales podrían ser efectivos como agentes bactericidas tanto para bacterias positivas como negativas en un cultivo dado, en particular los fullerenos del tipo C60 podrían potencialmente inhibir de modo importante el crecimiento y la respiración de los microbios (Epa 2005).